Oleg А. Chagin (olegchagin) wrote,
Oleg А. Chagin
olegchagin

Category:

Валентин Рич. Виток спирали (1974)

В тот день Менделеев очень спешил.

На десять дней, начиная с 17 февраля, получил он испрошенный в университете отпуск. Он должен был ехать в Новгородскую губернию, а затем в Тверскую губернию, а затем в Москву. Кроме обследования сыроварен, порученного ему Вольным экономическим обществом, он хотел ещё заехать в Боблово, повидать свое семейство.

Он только что получил почту и, завтракая, читал напутственное письмо секретаря общества.

Но, читая, он не переставал думать о своем. О неуловимой системе изменения свойств элементов.

Он думал о ней уже много лет. Но сейчас система эта была нужна ему, как никогда. Надо продолжать "Основы химии". Он рассказал уже о щелочных элементах — о литии, натрии, калии. О чем писать дальше? О щелочноземельных, самых близких к щелочным, — магнии, кальции, барии, стронции? А потом — о цинке, кадмии? Или о меди, серебре? Нет, лучше все–таки о цинке и кадмии, они двухвалентны, так же, как магний, как все щелочноземельные. Но тогда почему одновалентные, подобно литию и кадмию, медь и серебро должны пропускать вперёд двухвалентные элементы?

Где логика? Нет логики!

Верней, она есть, есть в точной последовательности атомных весов. Правда, эта логика физическая, и она пока не считается с логикой химических свойств.

Конечно, похожее сразу бросается в глаза. Кто не знает, что щелочноземельные элементы напоминают щелочные? А ведь они и по атомным весам следуют один за другим. Близки, очень близки! Натрий 23, магний 24. Калий 39, кальций 40.

Но ведь не везде так. Значит, закон совпадения — изменяющийся закон?

А что, если зайти с другого конца? Поискать среди близких по атомным весам не те, которые химически близки, а как раз наоборот?

Мысль была так парадоксальна, что Менделеев схватил карандаш и на первом подвернувшемся клочке бумаги — на обороте только что полученного письма — записал: "Cl". А под символом хлора: "K". Поднялся и с письмом в руке стремительно прошел в кабинет — благо он был рядом.

Он набросал на том же обороте письма несколько цифр, потом схватил листок чистой бумаги и стал покрывать его символами и взятыми на память цифрами атомных весов.

Но переставлять элементы с места на место на листке бумаги было неудобно.

Менделеев обвёл взглядом кабинет, и взгляд его остановился на колоде карт — он любил раскладывать пасьянсы, когда отдыхал.

Вот что ему нужно — карты. Не такие, конечно, а с символами элементов. Чтобы их можно было разложить на столе и перекладывать с места на место.

Менделеев достал из ящика конторки пачку недавно отпечатанных визитных карточек, отсчитал семьдесят штук, остальные отправил обратно в ящик, а выложенные перевернул чистой стороной вверх.

Потом взял первый выпуск "Основ химии", открыл на страничке со списком простых тел и начал проставлять атомные веса элементов. И переносить их на карточки.

И вот уже первая карточка становится водородом, вторая — литием, третья — бором…

Колода готова. Осталось только взять из стопки на столе ещё один лист чистой бумаги, чтобы записывать, как ложатся карты.

О поездке уже не могло быть и речи.

Менделеев разделил все карточки на четыре кучки. В первую он собрал группы элементов, сходство которых не вызывало у него никаких сомнений, а свойства были хорошо известны — и атомный вес, и валентность, и характер сродства с другими элементами. Таких карточек набралось двадцать семь штук: щелочные металлы — литий, натрий, калий, рубидий, цезий; галогены — фтор, хлор, бром, йод; затем кислород и во многом схожие с ним сера, селен, теллур; затем сходные по многим признакам азот, фосфор, мышьяк, сурьма, висмут; ещё семейство — углерод, кремний, олово; ещё похожие — магний, цинк, кадмий; наконец, явно близкие — медь, серебро, ртуть. К последней группе можно было бы добавить ещё и золото. Но уж очень оно походило на платину и атомный вес почти такой же: золото — 197, платина — 194.

Вместе с золотом, платиной и совсем уже близкими к платине палладием, родием, рутением, иридием и осмием он отложил карточки некоторых, недостаточно изученных тяжёлых элементов.

Третью кучку составили не очень ясные по своему родству, но более лёгкие элементы, вроде бора, алюминия, кобальта.

И, наконец, в четвёртую попали несколько совсем почти не изученных, недавно открытых, чрезвычайно редких элементов, таких, как иттрий или, например, индий.

Теперь можно было строить таблицу, используя в первую очередь карточки из первой кучки.

Менделеев взял первое семейство щелочных металлов и построил его в ряд [по горизонтали]. Сперва самый лёгкий литий, за ним потяжелее — натрий, за ним еще более тяжёлый — калий, потом еще более тяжёлый — рубидий: последним встал самый тяжеленный — цезий, с атомным весом 133, недавно открытый Бунзеном и Кирхгофом, но, несомненно, относящийся к этому семейству: жадность его к кислороду была столь велика, что держать его можно было лишь в запаянном сосуде.

Под щелочные металлы Менделеев положил карточки галогенов. Так, чтобы один под другим стояли соседи по атомному весу: под литий с атомным весом 7 ставить ничего не пришлось — галогена с атомным весом легче 18 не существовало. Этот самый лёгкий галоген фтор пришелся под натрием, хлор — под калием, бром — под рубидием, йод — под цезием.

Точно так же, как калий и хлор, все остальные пары элементов были ближайшими соседями по атомному весу и совершенными противоположностями по свойствам. Если один в паре был одновалентен, то другой непременно семивалентен.

Дорога была правильной. Можно было двигаться дальше.

Кислород — под фтор, серу — под хлор, селен — под бром, теллур — под йод: шестивалентные под семивалентными.

Теперь пятивалентные: азот — под кислород, фосфор — под серу, мышьяк — под селен, сурьму — под теллур.

А висмут куда же? Над ним нет ни родственника кислорода, ни родственника йода… Ладно, пусть пока стоит в одиночестве, без пары. Есть же ещё элементы и в других кучках! Может, какой–нибудь подойдет…

Не всё ладно получилось и в следующем, углеродном семействе, которое встало ниже. Здесь не нашлось подходящей пары для мышьяка. Углерод с атомным весом 12 расположился под азотом с атомным весом 14; кремний с атомным весом 28 расположился под фосфором с атомным весом 31. Везде разница в две–три единицы: соседи! А под мышьяком с атомным весом 75 оказалась дырка.

Расставив остальные элементы первой кучки, многие из которых тоже оказались без пар или без родственников, Менделеев принялся разыскивать места карточкам из других кучек.

Он начал с семейства щелочных земель: тут похожие друг на друга элементы оказались ближайшими соседями и по весу — кальций с атомным весом 40 встал над калием с атомным весом 39, магний (24) над натрием (23), стронций (87) над рубидием (85), барий (137) над цезием (133).

Правда, литий снова остался без пары. Вот уже все карточки выстроились по порядку атомных весов в семь шеренг — по числу семейств элементов. И над литием оказался… бор, ничем не похожий на магний или кальций элемент, не двухвалентный, как щелочноземельные, а трёхвалентный, как алюминий. Что за странность?

Менделеев ещё раз тщательно проверял начало таблицы. Литий, атомный вес 7, одновалентный металл. Бор, атомный вес 11, вроде бы похож на металл, трёхвалентен. Углерод, атомный вес 12, промежуточный элемент между металлами и неметаллами, четырёхвалентен. Азот, вес 14, неметалл, пятивалентен. Бериллий, вес чуть больше 14, металл, трёхвалентен. Кислород, вес 10, неметалл, шестивалентен. Фтор, вес 19, неметалл, семивалентен. Натрий, вес 23, металл, одновалентен…

Стоп! С одновалентного натрия должна начинаться вторая семёрка…

Натрий, вес 23, одновалентный металл. Магний, 24, металл, двухвалентен. Алюминий, 27, металл, трёхвалентен. Кремний, 28, промежуточный элемент, четырёхвалентен. Фосфор, 31, неметалл, пятивалентен. Сера, 32, неметалл, шестивалентна. Хлор, 35, неметалл, семивалентен. Калий…

Вторая семёрка была образцовой — атомные веса шли один за другим без перебоя, и валентность у каждого последующего элемента увеличивалась ровно на единицу.

Менделеев снова возвратился к первой семерке. Элементы здесь стояли неправильно. И неправильностей было две. Первая: после одновалентного лития стоял трёхвалентный бор. Вторая: после пятивалентного азота стоял трёхвалентный бериллий.

Если первая неправильность была совсем непонятной, то вторая объяснялась тем, что бериллий явно попал не на свое место. Не будь его тут, после пятивалентного азота шёл бы шестивалентный кислород. И вообще азот и кислород такая же пара, как другие элементы этих двух шеренг: фосфор и сера, мышьяк и селен. А бериллий тут — третий лишний!

Как он попал на чужое место?

Атомный вес бериллия — 14,1. Значит, его место между азотом и кислородом.

Но в таком случае нарушался строй всей первой семёрки элементов. Получалось, как в известном с давних времён анекдоте, когда весь взвод шёл не в ногу, а в ногу шагал только один поручик.

Надо было к этому странному "поручику" присмотреться получше.

…С глубокой древности были известны и высоко ценились прозрачные, густо–зеленые изумруды и зеленовато–голубые аквамарины.

А такие же по форме кристаллы, но бесцветные, называли "бериллами", от греческого слова "бериллос" — "блестящий", "сверкающий".

Изумруды и аквамарины вставляли в короны и скипетры царей, а бериллы знатные римляне употребляли вместо очков или, точнее, вместо луп.

Во второй половине XVIII века, когда химики начали подвергать анализу все природные минералы, этой участи не миновал и берилл.

Именно тогда удалось установить, что изумруд, аквамарин и берилл — это, в сущности, одно и то же. Потому и форма кристаллов у них одинаковая. А разный цвет зависит от ничтожных примесей других веществ: в аквамарине есть железо, в изумруде — железо и хром.

Из чего же состоят эти драгоценные камни?

Считалось, что из глинозёма — земли, из которой впоследствии был выделен элемент глиний, позже названный алюминием, и из кремнезёма — земли, из которой впоследствии был выделен элемент кремний.

И только в 1798 году француз Луи Никола Воклен открыл в берилле, помимо кремнезёма и глинозёма, еще одну новую землю.

Она была очень похожа на глинозём. Но были у нее и кое–какие отличия — они и помогли её выделить. Например, в одной из мягких щелочей — в углекислом аммонии — глинозём ни за что не хотел растворяться, а новая земля растворялась довольно легко. И ещё: образуемые этой землёй соли имели сладкий вкус.

По этому признаку Воклен и решил назвать открытую им в берилле новую землю глициной — от греческого слова "гликос" или "глюкос", что означает "сладкий". (От этого же греческого прилагательного образовано слово "глюкоза").

Но в то же примерно время был открыт элемент иттрий, и его соли тоже оказались сладкими. И шведский химик Экеборг предложил землю, полученную из берилла, так и называть — берилловой.

У нас в стране выделенный из берилловой земли элемент долго именовался глицием, глицинием, глицинитом и даже сладимцем. Но в конце концов, как и в других странах, его стали называть бериллием.

Из–за трудности отделения окиси бериллия от окиси алюминия (глинозёма) бериллий принято было считать родственником алюминия.

И раз алюминий был трёхвалентным, считалось, что и бериллий тоже трёхвалентен и что окись бериллия, подобно глинозёму, имеет формулу Be2O3. И что хлористый бериллий, подобно хлористому алюминию, имеет формулу BeCl3. Так писал известнейший химик первой половины XIX века швед Йёнс Якоб Берцелиус.

Правда, с Берцелиусом не соглашался русский химик Иван Васильевич Авдеев. Он долгое время работал на Урале, богатом аквамаринами, изумрудами и бериллами, и хорошо изучил их, а также сделал анализы сернокислого глиция и хлористого глиция, и двойных солей глиция с калием. Авдеев доказывал, что чаще всего глиций ведет себя подобно магнию, а вовсе не подобно алюминию. Но в Западной Европе не очень считались с исследованиями русских химиков. И мнение Авдеева общепринятым не стало.

Менделеев эти работы Авдеева, опубликованные в том же "Горном журнале", в котором была напечатана и первая статья Менделеева, знал и высоко ценил. И, задумавшись о месте бериллия в таблице, он сразу же вспомнил об исследованиях Авдеева.

А что если прав Авдеев, а не Берцелиус? — думал Менделеев. Если бериллий действительно собрат не алюминия, а магния? Если он двухвалентен, а не трёхвалентен?

Ведь тогда и место ему будет не в шеренге алюминия, а в шеренге магния.

Менделеев убрал карточку с символом "Be" с её прежнего места.

Теперь азот и кислород сомкнули ряды, и здесь восстановился такой же полный порядок, как во второй семёрке: после пятивалентного элемента с атомным весом 14 шел шестивалентный с атомным весом 16.

Но куда девать бериллий? В шеренге магния есть только одно незанятое место рядом с литием. А с литием встать ему никак нельзя — бериллий с атомным весом 14,1 будет тогда стоять раньше бора, а у бора атомный вес всего 11 — на три единицы меньше…

Впрочем, если уж верить Авдееву, так до конца!

Откуда взялся у бериллия его атомный вес — 14,1? Одно из определений было таким. Разложили хлористый бериллий на бериллий и хлор. Взвесили и то и другое. Оказалось, на 35,5 грамма хлора приходится 4,7 грамма бериллия. Атомный вес хлора известен — 35,5. Каков же атомный вес бериллия? А это зависит от того, сколько атомов бериллия в одной молекуле соли. По Берцелиусу, в хлористом бериллии на один атом хлора приходится три атома металла, как и в хлористом алюминий [тут ошибочка в тексте? наоборот, на один атом металла приходится три атома хлора?]. Значит, чтобы найти атомный вес бериллия, надо эти самые 4,7 умножить на три. Вот и получилось 4,7x3=14,1.

Но ведь по Авдееву, на один атом хлора приходится не три, как у алюминия, а два, как у магния, атома бериллия. И тогда его атомный вес…

Менделеев перечеркнул на карточке бериллия цифры "14,1" и размашисто вывел новые цифры: "9,4". И поставил карточку туда, где она должна была находиться в соответствии с новым атомным весом, — между литием и бором.

Теперь эта семёрка выглядела так. Первым шёл одновалентный металл литий, вторым — двухвалентный металл бериллий, третьим — трёхвалентный промежуточный элемент бор, четвертым — четырёхвалентный промежуточный элемент углерод, пятым — пятивалентный неметалл азот, шестым — шестивалентный неметалл кислород, седьмым — семивалентный неметалл фтор.

Уже не одна семёрка, а четырнадцать карточек подтверждали то, что Менделеев предчувствовал, а именно — соответствие химических свойств атома его физическим свойствам.

Не простое соответствие, далеко не простое! Расположи элементы в один ряд — и ничего не увидишь. Но вот так, когда стоят они в семь шеренг, видно, что строй этот — естественный.

В самом деле, вот первый из четырнадцати, литий. Очень активный металл, на воздухе он сразу покрывается рыхлой коркой окисла, а уже при слабом нагреве воспламеняется. С водой даёт едкую щелочь.

Второй, бериллий, тоже металл, но менее активный. На воздухе окисляется медленно. И плёнка окисла у него тоненькая, плотная. А чтобы воспламенить его, нужен очень сильный нагрев. Раствор окисла в воде тоже имеет щелочные свойства, но слабые.

Третий, бор, кое в чём ещё проявляет металлические свойства, но в основном ведёт себя уже как неметалл. На воздухе, при нормальной температуре, не окисляется совсем. Раствор окисла в воде почти не обнаруживает щелочных свойств, чаще обнаруживает кислотные.

Четвёртый, углерод, еще ближе к неметаллам. Соединение углекислого газа с водой — это уже настоящая кислота, хоть и слабенькая.

Следующий, пятый в первой семёрке элемент, азот — это уже типичный неметалл; правда, еще очень неактивный. С кислородом не желает вступать в соединения до тех пор, пока его как следует не разогреют — выше 1000 градусов! Но с водой окись азота даёт сильную азотную кислоту.

Куда более агрессивен шестой элемент, кислород. Вот уж неметалл так неметалл! С активными металлами он соединяется яростно, со взрывом. Только несколько самых стойких, благородных металлов, вроде золота, платины, серебра, не поддаются окислению.

Ещё более активный неметалл — седьмой элемент, фтор. Он до такой степени активен, так цепко соединяется с другими веществами, что в то время, о котором идёт речь, его никто еще не сумел выделить в свободном виде.

Казалось бы, конструируй мир атомов человек, он сделал бы восьмой элемент еще более активным неметаллом, чем фтор, но… на восьмом месте, рядом с фтором, стоял натрий, такой же и даже ещё более активный щелочной металл, чем литий, с которого все началось. Круг замкнулся. А верней — с натрия элементы пошли на второй круг.

Девятый, магний, был подобен второму — бериллию. Десятый, алюминий — третьему, бору. Одиннадцатый, кремний — четвёртому, углероду. И так вплоть до четырнадцатого, хлора подобного седьмому, фтору.

Менделеев взглянул на пятнадцатую карточку. Это был калий. Опять скачок, опять переход от медленного, постепенного изменения свойств к внезапному, резкому, контрастному: от самого активного неметалла к самому активному металлу. Элементы уходили на третий круг.

Так вот каким оно было — долго скрывавшееся от людских глаз соответствие между физическими и химическими свойствами атомов! Химические свойства зависели от атомного веса, они изменялись в соответствии с его изменением, но не однообразно, а периодически, сперва плавно, потом скачком, потом опять плавно, потом опять скачком и так далее.

Валентин Рич. Виток спирали (1974)

https://libking.ru/books/sci-chem/559887-26-valentin-rich-vitok-spirali.html

Subscribe
Comments for this post were disabled by the author