Oleg А. Chagin (olegchagin) wrote,
Oleg А. Chagin
olegchagin

Category:

Обмен углеводов и особенности энергетического обеспечения мозга

В нервной ткани, составляющей всего 2% массы тела человека, потребляется 20% кислорода, поступающего в организм.

За сутки в мозге окисляется 100-120 г глюкозы. В состоянии спокойного бодрствования на долю мозга приходится примерно 15 % общего метаболизма, следовательно, в покое метаболизм мозга на единицу массы ткани примерно в 7,5 раз превышает усредненный метаболизм тканей, не относящихся к нервной системе. Большая часть повышенного метаболизма мозга связана именно с нейронами, а не с глиальной тканью.

Главным потребителем энергии в нейронах являются ионные насосы их мембран, транспортирующие главным образом ионы натрия и кальция наружу, а калия – внутрь клетки. Во время проведения потенциала действия увеличивается потребность в дополнительном мембранном транспорте для восстановления соответствующей разности концентраций ионов по обе стороны мембран нейронов. Функция нервной клетки заключается в проведении нервного импульса, который зависит от градиента концентрации ионов K+ и Nа+ внутри и вне клетки. АТФ необходима для поддержания активной работы Nа+/K+ — АТФ-азы — фермента, поддерживающего потенциал покоя и восстанавливающего его после прохождения нервного импульса.

Поэтому, во время интенсивной мозговой активности метаболизм нервной ткани может возрастать на 100-150 % . Основной путь получения энергии - аэробный распад глюкозы по ГБФ-пути. Глюкоза является почти единственным энергетическим субстратом, поступающим в нервную ткань, который может быть использован ее клетками для образования АТФ. Полное окисление 1 грамм-молекулы глюкозы сопровождается выделением 686000 калорий энергии, при этом только 12000 калорий необходимо для образования 1 грамм-молекулы АТФ. За счет последовательного поэтапного расщепления молекулы глюкозы при окислении каждого моля образуется 38 моль АТФ. Проникновение глюкозы в ткань мозга не зависит от действия инсулина, который не проникает через гематоэнцефалический барьер. Влияние инсулина проявляется лишь в периферических нервах. следовательно, у больных тяжелым диабетом при практически нулевом уровне секреции инсулина глюкоза легко диффундирует в нейроны, что чрезвычайно важно для предупреждения потери умственных функций у данной категории больных.

В нормальных условиях почти вся энергия, используемая клетками мозга обеспечивается глюкозой, доставляемой кровью. Глюкоза должна постоянно доставляться из капиллярной крови: в любой момент необходим двухминутный запас глюкозы в нейронах в виде гликогена. Окисление неуглеводных субстратов с целью получения энергии невозможно, поэтому при гипогликемии и/или даже кратковременной гипоксии в нервной ткани образуется мало АТФ. Следствием этого являются быстрое наступление коматозного состояния и необратимых изменений в ткани мозга. Процессы метаболизма глюкозы осуществляются в теле нейрона, и его отростках, шванновских клетках (миелиновой оболочке), следовательно, все отделы нервной ткани способны синтезировать АТФ.

Высокая скорость потребления глюкозы нервными клетками обеспечивается, в первую очередь, работой высокоактивной гексокиназы мозга. В отличие от других тканей, здесь гексокиназа не является ключевым ферментом всех путей метаболизма глюкозы. Гексокиназа мозга обладает в 20 раз большей активностью, чем соответствующий изофермент печени и мышц. Под воздействием гексокиназы и при участии АТФ глюкоза превращается в глюкозо-6-фосфат. Фосфорелирование глюкозы является необратимым процессом и служит способом захвата глюкозы клетками.

Глюкоза немедленно связывается с фосфатом и в такой форме уже не может покинуть клетку. Активность изоцитратдегидрогеназы даже при нормальном уровне утилизации глюкозы в состоянии покоя максимальна. Поэтому при повышенном энергопотреблении нет возможностей ускорения реакций ЦТК. Образование НАДФН2, который используется в нервной ткани в основном для синтеза жирных кислот и стероидов, обеспечивается сравнительно высокой скоростью протекания ГМФ-пути распада глюкозы. Энергия АТФ в нервной ткани используется неравномерно. Аналогично скелетным мышцам, функционирование нервной ткани сопровождается резкими перепадами в потреблении энергии. Скачкообразное повышение энергозатрат происходит при очень быстром переходе от сна к бодрствованию.

Для этого существует еще один механизм: образование креатинфосфата. Несмотря на исключительную важность АТФ в качестве способа трансформации энергии, это вещество не является самым представительным хранилищем макроэргических фосфатных связей в клетках Количество креатинфосфата, содержащего макроэргические фосфатные связи, в клетках в 3-8 раз больше. Кроме того, в условиях организма макроэргические фосфатные связи креатинфосфата содержат более 13000 к/моль.

В отличие от АТФ креатинфосфат не может действовать как агент, напрямую сопряженный с переносом энергии питательных веществ функциональным системам клетки, но он может обмениваться энергией с АТФ. Когда в клетках присутствует чрезвычайно большое количество АТФ, энергия АТФ используется для синтеза креатинфосфата, который становится дополнительным депо энергии. Затем, по мере использования АТФ, энергия, содержащаяся в фосфокреатине, быстро возвращается АТФ, которую последняя может передавать функциональным системам клеток. Эта реакция полностью обратима, ее направление зависит от соотношения АТФ/АДФ в клетках нервной ткани. В условиях покоя концентрация АДФ в клетках низка, поэтому химические реакции, которые зависят от АДФ как одного из субстратов, осуществляются медленно. Таким образом, АДФ является главным лимитирующим скорость фактором практически всех путей обмена энергии. Когда клетки активируются, АТФ превращается в АДФ, увеличивая его концентрацию пропорционально степени активности клетки. Повышение концентрации АДФ автоматически увеличивает скорость всех метаболических реакций, направленных на высвобождение энергии из питательных веществ. Снижение активности клетки приостанавливает высвобождение энергии вследствие очень быстрого превращения АДФ в АТФ.

Известно, что на работу мозга расходуется около 20% энергии, производимой человеческим организмом. Но на что расходует эту энергию сам мозг? До недавних пор считалось, что практически вся потребляемая мозгом энергия используется для передачи нервных импульсов, другими словами - на мыслительную деятельность. Сегодня полагают, что только две трети потребляемой мозгом энергии расходуется на распространение импульсов, а оставшаяся часть идёт на поддержание жизнедеятельности клеток самого мозга (С.Е.Северин, 2009). Эксперименты, проведённые на лабораторных крысах с использованием магнитно-резонансной томографии, помогли установить взаимосвязь между интенсивностью обмена веществ – "скоростью" синтеза молекулы АТФ – и энергопотреблением при различных уровнях мозговой активности. Это в свою очередь позволило оценить, какая часть общего расхода энергии не зависит от мозговой активности и расходуется на "собственные нужды", в данном случае на поддержание так называемого изоэлектрического состояния: равенства положительных и отрицательных зарядов в клетках мозговой ткани.

Известно, что физические упражнения приводят к значительному расходованию глюкозы мышцами. По этой причине в момент физических нагрузок уровень глюкозы в крови человека снижается. При этом мозг переходит на использование молочной кислоты. Одним из важнейших факторов, определяющих специфику реакции разных нейронов на недостаток кислорода, является их различие в энергетических потребностях. Последнее, по-видимому, определяется степенью разветвленности дендритов и общей площадью клеточной мембраны, поляризация которой требует постоянного расхода энергии. Системы и центры, включающие в себя преимущественно нейроны, богатые дендритами (новая кора с ее богатейшей сетью вставочных нейронов, клетки Пуркинье мозжечка), согласно этой гипотезе, оказываются особенно ранимыми при гипоксии.

Вероятно, существенную роль играют и особенности биохимии нейронов разных областей мозга (теория патоклиза - тенденция определенного анатомического образования центральной нервной системы реагировать определенным патологическим процессом на данный повреждающий фактор, например образование очагов некроза и кист в бледном шаре при отравлении окисью углерода (Рубенштейн, 1998). Именно различием биохимической структуры нейронов пытаются объяснить неодинаковую ранимость различных секторов гиппокампа. При умирании от кровопотери на фоне длительной артериальной гипотензии важнейшее значение приобретают особенности кровоснабжения различных образований мозга, так как в этих случаях в более выгодном положении оказываются области мозга, расположенные ближе к магистральным сосудам (подкорковые области, системы основания мозга, особенно ствол), функции которых угасают позднее функций новой коры больших полушарий.

Распределение областей повреждения в мозге, пережившем прекращение кровообращения, определяется как спецификой обмена веществ различных видов нейронов, так и особенностями кровоснабжения разных отделов и участков мозга. К этим двум факторам избирательной ранимости различных отделов мозга следует добавить фактор относительной сложности функции (и соответственно ее филогенетического «возраста»), так как более молодые в филогенетическом отношении функции, являющиеся и более сложными (например, мышление), обслуживаются большим числом нейронных систем, расположенных на многих, в том числе и на более высоких анатомических уровнях и, естественно, оказываются более уязвимыми при кислородном голодании. Немаловажное значение имеет и степень функциональной активности систем мозга (а следовательно, их энергетические потребности и состояние кровоснабжения) в момент возникновения гипоксии.

Subscribe
Comments for this post were disabled by the author