September 28th, 2014

"Раны победителей заживают быстрее"

Человек давно предполагал наличие взаимодействий между иммунной и нервной системами в организме. Недаром нам всем привычна пословица “В здоровом теле - здоровый дух”. Известны также и примеры обратной связи - еще Гиппократ отметил эту закономерность. В его “Диалогах” ученики спрашивают: “Учитель, ты лечил богатых и бедных, победителей и побежденных. Какова разница между ними?” И Гиппократ ответил: “Раны победителей заживают быстрее!” И вот совсем недавно нейрохимики получили доказательства реальной связи между иммунной и нервной системами. В лимфоцитах, циркулирующих в кровяном русле, обнаружены специфические рецепторы нервных клеток. Изучение свойств этих рецепторов открывает новые возможности взаимодействия двух важнейших систем организма. Глутаматные рецепторы в нервной системе. Среди различных медиаторов, обеспечивающих передачу возбуждения между нейрональными клетками, особое место занимает достаточно простая по структуре молекула глутаминовой кислоты, глутамат: HOOC–СН2–СН2–СН(NH2)–СООН. Глутаматергические механизмы представлены примерно в 40% нервных клеток, а оставшаяся часть выпадает на долю всех остальных медиаторов (серотонина, ацетилхолина, допамина и др.). По своему участию в работе нервных клеток глутаматные рецепторы делятся на два больших подтипа. Одни, ионотропные, соединены с ионными каналами, они открывают их после активации соответствующими молекулами (лигандами), так что потоки ионов вызывают электрическую активность нейрона. Другие, метаботропные, структурно не связаны с ионными каналами, они управляют метаболическими процессами в клетке через специальные сигнальные молекулы-информаторы, контролируя активность ионотропных рецепторов. Лиганды, активирующие нейрональные рецепторы, - их первичные информаторы (первичные мессенджеры), а сигнальные молекулы, образующиеся при активации метаботропных рецепторов и использующиеся для корректировки сигналов внутри клетки, - вторичные мессенджеры. Наличие разных глутаматных рецепторов в глутаматергических синапсах головного мозга продемонстрировано с помощью фармакологических соединений, взаимодействующих с каким-либо одним видом глутаматных рецепторов. Выделяют три группы ионотропных рецепторов, названных в соответствии с лигандами, обеспечивающими их активацию: NMDA-рецепторы, каинатные рецепторы и AMPA-рецепторы. Метаботропные рецепторы в настоящее время представлены восемью различными белками, которые делятся на три группы в зависимости от того, какие вторичные мессенджеры они включают в работу. Рецепторы группы I связаны с регуляцией кальций-зависимых реакций, а II и III групп - с циклическими нуклеотидами. Более подробно о функциях вторичных мессенджеров в клетках и внутриклеточных путях регуляции можно прочитать в специальной литературе [1]. Кроме соединений, имитирующих действие глутамата на отдельные виды рецепторов, агонистов глутамата, известны и вещества, избирательно выключающие их, - антагонисты глутамата. Для простоты изложения не будем приводить полные названия, а ограничимся общеупотребимыми сокращениями этих синтетических лигандов, которые активно используют в экспериментальной нейрохимии. Однако следует обратить внимание, что все разнообразие возможностей современной фармакологии вместилось в одну простую формулу глутамата, способного в синаптических структурах мозга активировать различные рецепторы, причем в том соотношении, которое обеспечивает согласованную работу всей глутаматергической системы. Молекулярные реакции активируемого нейрона. Нейрон активируется в результате взаимодействия глутамата с ионотропными рецепторами. Возникающая при этом электрическая активность (электрический потенциал) распространяется вдоль по аксонам до нервного окончания и передает информацию о возбуждении на другие нейроны. Одновременно в возбуждаемой нервной клетке происходят важные метаболические изменения. Временная последовательность этих процессов в общих чертах выяснена и представляется следующим образом. При высвобождении глутамата в межсинаптическую щель среди всех рецепторов, взаимодействующих с ним, наиболее активны каинатные. Они открывают соответствующие ионные каналы, через которые ионы натрия устремляются внутрь клетки и формируют возбуждающий потенциал. Аналогичную роль выполняют AMPA-рецепторы. В покоящемся нейроне NMDA-рецепторы связаны с ионами магния, из-за чего их сродство к медиатору снижено. Однако благодаря деполяризации мембраны, вызываемой возбуждающим потенциалом, комплекс распадается, ионы магния отделяются от NMDA-рецепторов, и способность последних связывать глутамат повышается. Таким образом, на второй стадии возбуждения открываются NMDA-зависимые ионные каналы, пропускающие внутрь нейрона натрий и кальций. Это удлиняет возбужденное состояние мембраны и одновременно включает внутриклеточные реакции, зависящие от ионов кальция. Длительность второй волны возбуждения определяется не только активностью NMDA-рецепторов. Появление глутамата в межсинаптической щели стимулирует специальные белки, которые обеспечивают захват и обратный транспорт этого медиатора в нервные или глиальные клетки. Точно так же и ионы кальция, попавшие внутрь возбужденного нейрона, с одной стороны, инициируют высвобождение дополнительного количества кальция из внутриклеточных депо, а с другой, - активируют ионные насосы, выбрасывающие кальций из клетки наружу. Следовательно, вероятность активации NMDA-рецепторов лежит в том временном интервале, когда они еще могут связаться с медиатором (мембрана нейрона деполяризована и магний отделен от ингибирующего центра), а в межсинаптической области еще имеются молекулы глутамата, избежавшие обратного захвата. Но и кальций-зависимые реакции в клетке имеют ограниченные временные возможности - пока стационарная (очень низкая) концентрация этого иона не будет восстановлена. Таким образом, взаимодействие между каинатными и NMDA-рецепторами определяет длительность волны возбуждения и эффективность перестройки метаболизма нервной клетки под влиянием кальция. Но даже и эта сложная игра на сродстве разных рецепторов к глутамату и эффективности системы его обратного транспорта не исчерпывает тонкой настройки нервной клетки на передачу и реализацию возбуждения. Она довершается участием метаботропных рецепторов в регуляции активности ионотропных рецепторов и глутаматного транспортера. На пресинаптической мембране при возбуждении метаботропные рецепторы групп II и III подавляют высвобождение глутамата. Напротив, метаботропные рецепторы группы I стимулируют этот процесс. Их действие инициируют арахидоновая кислота (АА) и диацилглицерин (DAG), которые высвобождаются при активации фосфолипазы С (PLC) метаботропными рецепторами группы I на постсинаптической мембране. Второй регулятор, диацилглицерин, активирует протеинкиназу С, которая блокирует калиевые каналы. На этой же постсинаптической мембране метаботропные рецепторы групп II и III блокируют потенциал-зависимые Са-каналы. Таким образом, возбуждение клетки, вызванное ионотропными рецепторами синаптического контакта, контролируется метаботропными рецепторами этих же синаптических мембран (рис.1). Активация протеинкиназы С и подавление K-каналов удерживают деполяризацию мембраны, тем самым препятствуя связыванию магния с NMDA-рецепторами и поддерживая их сродство к медиатору. Вероятно, именно благодаря этому избыточное возбуждение метаботропных рецепторов вызывает токсический эффект NMDA. Это свойство лежит в основе дисбаланса в функции нервных клеток, который проявляется при различных повреждениях мозга - от нейродегенерации до ишемии, наступающей при инсульте. Значит, нейротоксичность NMDA-рецепторов может приводить к клеточной смерти - либо к некрозу, либо к апоптозу. Для понимания молекулярных механизмов работы системы небезразлично, какой путь будет выбран. Важно это знать и медикам, разрабатывающим способы защиты нейронов мозга от смерти в неблагоприятных условиях [2]. Современные приборы с помощью специальных красителей позволяют количественно оценить каждый из этих видов клеточной смерти при окислительном повреждении мозга. Очень часто для таких исследований используется проточная цитометрия - метод индивидуальной характеристики клеток [3]. Апоптоз, некроз и пролиферация клеток. Благодаря проточной цитометрии исследователи могут легко отличать живые нейроны от тех, которые встали на путь клеточной смерти, и дифференцировать некротические нейроны от апоптозных на самых ранних стадиях. Апоптоз - генетически запрограммированная смерть, осуществляемая с помощью специфических механизмов и ферментов. При апоптозе клетка сморщивается, ее структуры разрушаются цистеиновыми-аспарагиновыми протеиназами, так называемыми каспазами. Семейство этих ферментов (в него входит около десяти различных протеиназ) составляет каскад взаимоконтролируемых белков, перевод которых в активное состояние требует одновременного присутствия ряда клеточных факторов. Такой ступенчатый механизм предохраняет от случайного возникновения апоптоза. Некроз обусловлен механическим или иным повреждением клеточной мембраны, нарушением целостности и управляемости клетки. Клетки, не способные выполнять свои функции, умирают, а их большое количество создает в ткани очаг воспаления. Несмотря на принципиальные отличия апоптоза и некроза, их объединяет полезное свойство - они помогают организму очиститься от ненужных (поврежденных) или вредных (чужеродных) структур. В очаг воспаления устремляются макрофаги и другие клетки, “мусорщики”, удаляющие некротические части тканей или чужеродные частицы (например, попавшие в ткани занозы). С помощью апоптоза организм пытается распознать и ликвидировать клетки-мутанты, ставшие опасными для организма (перерождающиеся спонтанно или под влиянием внешних факторов). Так, частота появления в организме злокачественных клеток много выше, чем вероятность самого заболевания, поскольку в большинстве случаев они распознаются и нейтрализуются иммунной системой без вреда для организма. Апоптоз запрограммирован на постепенное контролируемое устранение клеток, а некроз осуществляется быстро, хаотически и неуправляемо. При апоптозе фрагменты клеток или даже целые белковые молекулы могут использоваться другими клетками для выполнения тех же самых функций. Например, в тимусе, где происходит созревание лимфоцитов, клетки, распадающиеся при апоптозе, поставляют свои белки-рецепторы для превращения “юных” лимфоцитов в полноценные иммунные клетки. Эпителиальные клетки слизистой запрограммированы таким образом, что апоптоз индуцируется в них периодически и с большой частотой (они живут лишь 1.5-2 недели). Отторжение апоптозных клеток снижает вероятность проникновения в организм вирусной инфекции. Интересно, что в русской армии для предотвращения кишечных эпидемий по указу Петра I в пищу добавляли перец. Сегодня известно, что это прекрасное средство для активации апоптоза клеток слизистого эпителия. Так или иначе, выгода распознавания ранних стадий и типа клеточной смерти очевидна. Для каждого из них имеются свои специфические маркеры. Один из фосфолипидов клеточных мембран, фосфатидилсерин, в нормальных условиях расположенный с внутренней стороны мембранного бислоя, при нарушениях цитоскелета сигнализирует о начале апоптоза. Кстати, именно так макрофаги распознают и удаляют злокачественные клетки. Белки, чувствительные к фосфатидилсерину (аннексины), используют для раннего распознавания апоптозных клеток. А для некротических клеток с поврежденной мембраной имеется другой маркер. Им может быть краситель, например иодид пропидия (PI), который связывается с нуклеиновыми кислотами, но не проникает через мембрану живых (нативных) клеток. Экспериментально показано, что после длительной (30 мин) индукции окислительного стресса активацией NMDA-рецепторов появляются и некротические, и апоптозные клетки, причем их долю в популяции легко рассчитать (рис. 2). Таким образом, в руках исследователей имеется модель, позволяющая оценивать как потенциальную уязвимость нейронов со стороны различных факторов, так и возможность защиты клеток от апоптоза или некроза (например, с помощью лекарственных препаратов). Следить за развитием апоптоза можно также, измеряя активность внутриклеточных каспаз, которые в клетке взаимно контролируют друг друга (рис. 3). Так, при связывании на клеточной мембране внеклеточных сигнальных молекул со специальным рецептором (CD95/Fas) в цитоплазме неактивная прокаспаза 8 превращается в активный фермент, который, в свою очередь, активирует каспазу 3, что открывает клетке путь к апоптозу. Нагружая клетки флуорогенным субстратом каспазы 3 и стимулируя их разными способами, можно измерять сигнал от флуоресцентного продукта. Растет продукт - активируется каспаза 3, и интенсивность сигнала будет пропорциональна активации фермента и вероятности развития апоптоза. Однако каспаза 3 участвует не только в реализации апоптоза, но и во многих стадиях клеточного цикла и в процессах пролиферации [4]. Особенно важны эти реакции для клеток иммунной системы. Значит, в ряде случаев активность каспазы 3 не обязательно означает начало апоптоза, а может быть связана с пролиферацией лимфоцитов. Глутаматные рецепторы иммуннокомпетентных клеток. История открытия и изучения глутаматных рецепторов накопила массу примеров их причастности к работе нервной системы: NMDA-рецепторы ответственны за молекулярные механизмы памяти, метаботропные рецепторы вовлечены в процессы нейропластичности [5]. Тем неожиданнее оказались факты, указывающие на возможное присутствие глутаматных рецепторов не только в нейрональных клетках [6]. В 1997 г. И.А.Костанян и соавторы обнаружили, что глутамат хорошо связывается с мембранами лимфоцитов человека [7]. Вытеснить из этой связи его можно, добавляя структурный аналог глутамата - квисквалоновую кислоту. Позже было показано, что глутаматные рецепторы имеются в лимфоцитах грызунов, и их активация приводит к росту в клетках свободных ионов кальция и активных форм кислорода, в результате чего активируется каспаза 3 [8]. Предотвращение роста активного кислорода блокирует этот фермент (рис.4). Все эти факты демонстрировали, что работа NMDA-рецепторов в лимфоцитах - не случайный процесс, а связана с глутаматной регуляцией иммуннокомпетентной системы клетки. Дальнейшие исследования, проводимые в МГУ им.М.В.Ломоносова и в Институте неврологии РАМН, показали, что, кроме NMDA-рецепторов, в лимфоцитарной мембране имеются и метаботропные рецепторы группы III. Как и в нейрональных клетках, они выступают регуляторами ионотропных рецепторов. В наших экспериментах при активации NMDA-рецепторов в лимфоцитах увеличивалась концентрация ионов кальция и активных форм кислорода и, как следствие, активировалась каспаза 3. Ни один из этих эффектов не проявлялся, если в среду инкубации добавляли активатор метаботропных рецепторов L-AP4. Однако совместное присутствие NMDA и L-AP4 оказывало драматический эффект на жизнеспособность клеточной популяции. Даже после короткой инкубации появлялось большое количество мертвых клеток. Это привело нас к выводу, что присутствие ионотропных и метаботропных рецепторов глутамата на мембранах лимфоцитов делает их чувствительными к тем же самым сигнальным молекулам, которые управляют активностью нейронов (рис.5). Насколько важен факт распространения глутаматных механизмов регуляции на иммунную систему? Фактически, открытие на клетках иммунной системы глутаматных рецепторов, ответственных за молекулярную память, позволяет предполагать общность формирования поведенческих, адаптационных и других реакций в клетках нервной и иммунной систем. Другими словами, и те и другие клетки открыты одним и тем же видам сигнальных молекул, и информация, обусловленная их появлением, доступна как нервной, так и иммунной системе. Значит, эти системы могут “общаться”, используя язык одних и тех же химических символов [9]. Наличие глутаматных рецепторов в клетках иммунной системы вскрывает структурную основу этих взаимодействий и позволяет считать глутамат не только нейро-, но и иммунномедиатором.












Автор: Александр Александрович Болдырев - доктор биологических наук, профессор Центра молекулярной медицины и Международного биотехнологического центра МГУ, рук. лаб. нейрохимии Ин-та неврологии РАМН.

Литература к статье "Нейрональные рецепторы в клетках иммунной системы":

1. Введение в молекулярную медицину / Ред. М.А.Пальцев. М., 2004.

2. Болдырев А.А. // Биохимия. 2000. Т.65. С.981-990.

3. Болдырев А.А., Юнева М.О. // Соросовский образовательный ж-л. 2004. Т.8 (№2). С.7-14.

4. Caspases: their role in cell death and cell survival / Eds M.Los, H.Waczak. 2002.

5. Carpenter D. NMDA receptors and the molecular mechanisms of excitotoxicity, in Oxidative Stress at Molecular, Cellular and Organ Levels / Еds P.Johnson, A.Boldyrev. Research Signpost, Trivandrum, 2002. P.77-88.

6. Болдырев А.А., Тунева Е.О. // Биол. мембраны. 2005. Т.22. С.142-145.

7. Костанян И.А., Наволоцкая Е.В., Нуриева Р.И. и др. // Биоорг. хим. 1997. Т.23. С.805-808.

8. Boldyrev A.A., Kazey V.I., Leinsoo T.A. et al. // Biochem. Biophys. Res. Commun. 2004. V.324. P.133-139.

9. Nedergaard M., Takano T. and Hansen A.J. // Nature Rev. Neurosci. 2002. V.3.

Метаболические предпосылки вырождения

Любое достаточно сильное воздействие на организм человека равно как и животных сопряжено с защитными перестройками в нем. Согласно теории Г. Селье такие взаимоотношения организма и среды обозначаются как стресс и адаптация. Стрессовые воздействия могут быть самыми различными: физическими и психическими (физическая нагрузка, перепады температур, изменения климата, страх, тревога, переутомление и т.д и т.п.). У человека и других млекопитающих адаптивный ответ на стрессовое воздействие регулируется нейроэндокринной системой, то есть структурами головного мозга (корковые, подкорковые структуры) и железами внутренней секреции( гипофиз, надпочечники, щитовидная, поджелудочная железы ). Ранее мы подробно останавливались на том, как изменения особенностей жизни человека и общества меняет его адаптивные возможности. Происходят существенные изменения как в мозге так и в нейроэндокринной системе. Все это приводит к значительным изменениям коммуникаций между людьми, а затем и к изменениям общественного устройства (Павлов В. А., Доронин А.И. «На пути от естества природы к ноосфере. Механизмы адаптации живой материи и общества» 2008, «Личностное развитие» 2012, «Будущее под крышкой черепа» 2013, «Последний ароморфоз: истоки сверхадаптивностичеловека» 2014).
В последние десятилетия в развитых технологически обществах нарастает такое явление как дисплазия соединительной ткани (ДСТ). Адаптивные возможности людей с ДСТ существенно нарушаются: снижается иммунитет, устойчивость к грубым физическим воздействиям окружающей среды (интенсивная физическая нагрузка, перепады температур, изменения климата, воздействия инфекций и т. д.). У таких людей ослабленное здоровье и множество признаков рыхлой соединительной ткани (они худые с длинными конечностями и тонкими пальцами, часто имеют сильную близорукость, опущение органов, нарушения со стороны сердечнососудистой, пищеварительной, мочеполовой систем. Страдает половая функция . У женщин отмечаются всякие нарушения во время беременности и родов. Соответственно у них рождается большее количество детей с разнообразной патологией. В дальнейшем у таких детей имеются разнообразные нервно- психические расстройства и проблемы с соматическим здоровьем (Кадурина Т.И. « Дисплазия соединительной ткани» 2009).
Согласно данным некоторых исследователей ДСТ и сопровождающий ее дисгенетический синдром (ДС- нервно – психические нарушения ) наблюдаются более чем у половины современных детей (в развитых технологически европейских обществах) младшнго школьного возраста (Семинович А.В., Ковязина М.С « Межполушарное взаимодействие» 2009)
Хотя согласно нашим исследованиям на студентах-спортсменах в возрасте от 20 до 30 лет таких проявлений не было. То есть в образе жизни современного человечества (преимущественно европейского технократического типа ) что такое произошло и в системах адаптации накопились необратимые изменения, что резко изменяет адаптивные возможности людей.
По нашему мнению на молекулярном уровне это может быть связано со следующими перестройками метаболизма гормонов и гормонального профиля.
Важнейшим патогенетическим механизмом развития ДСТ является накопление в организме человека гормона прогестерона. Прогестерон это своеобразный родоначальник гормонов обеспечивающих стрессустойчивость человека- глюкокортикоидов ( Уайт А., Хендлер Ф, Смит Э., Хилл Р, Леман И. Основы биохимии» 1981). Но в то же время он выполняет и другие функции особенно в женском организме во вторй половине беременности, способствуя ее сохранению. Одновременно он влияет на обмен и физичес кие свойства соединительной ткани (вместе с другим гормоном–релаксином, образование которого прогестерон усиливает), делая ее более рыхлой. Чем подготавливает организм женщины к родам, делая суставы, связки, родовые пути более эластичными, готовыми к прохождению плода. Эти гормоны образуется в больших количествах «желтом» теле яичников и плаценте беременной. Но постоянно повышенный уровень в крови прогестерона свидетельствует не о беременности, а о том, что из прогестерона плохо образуются глюкокортикоиды. То есть гормоны повышающие устойчивость к стрессу. Очевидно, что такие закономерности сопряжены с длительным отсутствием интенсивных физических стрессовых воздействий и просто уменьшением за ненадобностью биосинтеза из прогестерона глюкокортикоидов. Однако человек порождение природы и резкое снижение уровня глюкокортикоидов ведет к диспропорциям в гормональном профиле, при чем из прогестерона образуются такие метаболиты как адреналовые андрогены. Именно такие сдвиги в метаболизме гормонов наблюдаются при наследственных заболеваниях сопряженных с подавлением образования из прогестерона глюкокортикоидов.
Поэтому ДСТ и ДС можно рассматривать как массовую наследственную патологию, на популяционном уровне ведущую к резкому снижению стресс устойчивости индивидуума и социума в целом.
Повышение уровня адреналовых андрогенов при пониженном уровне глюкокортикоидов ведет к нарушениям как половой функции (снижается необходимый уровень тестостерона у мужчин и эстрогенов у женщин) так и психики с нарушениями полового поведения. Отсюда и падение рождаемости и половые извращения. А в целом это признак деградации изнеженной длительным отсутствием естественных стрессовых воздействий популяции и по сути дела ее финал. На смену выродившейся популяции должна прийти другая более жизнеспособная без ДСТ и ДС и соответствующих гормональных, психических и коммуникативных нарушений. Народам же, еще сохраняющим достаточный адаптивный потенциал, необходимо срочно разработать меры по предотвращению и коррекции описанных нарушений.

Мои твиты

Эволюция научной картины мира: взгляд со стороны биологии

Приоритетная схема эволюции картины мира. Анализируя основания естествознания, история и философия науки и техники XX в. отдают приоритет физической картине мира, возводя ее по существу в ранг общенаучной картины мира. Принимается, что во второй половине XVII в. сложилась механическая картина мира, спустя два с половиной столетия ее сменила электродинамическая, на смену которой в первой половине XX в. пришла квантово-релятивистская картина мира [1]. На физику ориентированы также идеалы и нормы теоретического знания и трактовка философских оснований науки. Между тем, на протяжении XVII–ХХ вв. параллельно и в согласии с физической созидалась натуралистическая картина мира. Ее прогресс был сопряжен с введением в естествознание трех типов эволюционизма: биологического, глобального (биосферологического) и универсального.

Истоки натуралистической картины мира. Уже в картинах мира натуралистов XVIII в. эти типы эволюционизма сложно взаимодействуют. Так, Бюффон на фоне гармоничной Вселенной Ньютона за несколько лет до Канта развертывает картину возникновения Солнечной системы, включая Землю. Историю Земли он делит на семь эпох, уложив ее в 70–80 тысяч лет. Он принимает, что природа есть система законов; используя время, пространство и материю, она непрерывно творит. После образования материков на Земле появились растения и животные (в третью эпоху) и человек (в седьмую). Живая материя едина, играет в природе выдающуюся роль и связана с особым видом движения, осуществляющимся через процессы питания, роста и размножения. Фонд живой субстанции остается постоянным, хотя может быть представлен разными живыми формами. Эта идея Бюффона сближалась с учением о биосфере В.И.Вернадского [2, с.97]. Она вытекала из его представления о вечных, неразрушимых «органических молекулах» и из понятия «внутренней формы» – силы, направляющей эти молекулы при построении организма. Живая материя представлялась Бюффону в виде гигантского, сложно сотканного живого покрова. Переплетающиеся цепи поддерживают порядок живой природы: растения и животные взаимосвязаны, «органические молекулы» переходят беспрепятственно из одного организма в другой, из одного царства живой природы в другое. Организация живой материи не случайна и поддерживается «внутренней формой», проникающей силой, стоящей в одном ряду с силой тяготения, электричества и другими свойствами вещества. Этот механизм соединяет мир живой и мертвой природы и поддерживает их взаимодействие.

На рубеже XVIII и XIX вв. Ламарк создал понятие о биосфере. Он связал образование минералов с судьбой остатков живых существ и выдвинул тезис об образовании всех сложных веществ на Земле живыми телами. Жизнь на Земле не прерывалась: ископаемые организмы связывают живой мир прошлого и настоящего. Время безгранично. На поверхности Земли все изменяет положение, форму, свойства и внешний вид. Каждый вид с течением времени изменяет организацию и форму. Биологические и геологические явления связаны: живое вещество поддерживает земные «огромные циклы» благодаря «чудовищной способности» организмов размножаться, огромной их численности, постоянному возвращению выделяемых ими продуктов в круговорот веществ в природе. Ламарк рассматривал природу как целостную гармоничную систему. Эта система динамична, составляющие ее элементы подвижны, способны к самостоятельному развитию, но судьба каждого элемента подчинена целому (природе). Концепция гармонии природы Ламарка наполнена биологическим содержанием, природа выступает в ней как биосфера, располагающая внутренними механизмами поддержания равновесия.

Цель Кювье состояла в установлении последовательности слоев Земли в интервале геологического времени и выяснении связи этих слоев с заключенными в них ископаемыми остатками растений и животных. Задачу теоретического естествознания он усматривал в построении картины мира, дополнительной по отношению к ньютоновской картине Вселенной: «Нас поражает мощь человеческого ума, которым он измерил движение небесных тел, казалось бы, навсегда скрытое природой от нашего взора; гений и наука переступили границы пространства; наблюдения, истолкованные разумом, сняли завесу с механизма мира. Разве не послужило бы также к славе человека, если бы он сумел переступить границы времени и раскрыть путем наблюдений историю мира и смену событий, которые предшествовали появлению человеческого рода?» [3, с.74].

Отмечая, что астрономы двигались быстрее естествоиспытателей и что теория Земли отвечает периоду, когда философы полагали небо составленным из плитняка, а Луну равной по размерам Пелопонезу, Кювье высказывал надежду, что, как после Анаксагора явились Коперники и Кеплеры, проложившие дорогу Ньютону, так и естествознание со временем обретет своего Ньютона. Приближая этот миг, Кювье проследил связь ископаемых наземных животных с историей Земли: он выявил степень различий вымерших и современных видов, сопоставил эти различия с условиями существования, выяснил влияние на виды времени, климата и одомашнения, а также рассмотрел гражданскую историю народов и ее согласование с физической историей Земли. Кювье нашел, что жизнь на Земле существовала не всегда. Появившись, живые формы усложнялись на протяжении геологического времени. Жизнь как организующее начало противопоставлялась им мертвой природе. Не ставя вопроса о филогенетических отношениях вымерших и современных форм, о закономерностях видообразования, Кювье, тем не менее, создал картину планетного преобразования живого мира, указал на прогрессивный характер усложнения форм и все более высокую организацию господствующих форм при переходе от эпохи к эпохе. Смену господствующей формы на Земле на новейшем этапе геологической истории он связал с появлением человека. Историю Земли Кювье представил как историю целостной системы, где геология, живой мир, человек и человеческое общество составляют единство. Для него это был «вывод тем более ценный, что он связывает непрерывающейся цепью историю естественную с историей гражданской» [3, с.157].

Две стратегии построения научной картины мира: М.Планк и В.И.Вернадский. Успехи физики на рубеже XIX и XX вв. заставили заговорить о необходимости преобразования как картины мира, так и способов ее построения. Обращаясь к истории науки, проблему обсудили М.Планк (1909) и В.И.Вернадский (1910). Оба ученых усматривали цель науки в сведении знаний о мире в единую картину. Планк взвешивал возможность синтеза знаний о физическом микро- и макромире: речь шла о новой теоретической физике и новой физической картине мира [4]. Вернадский также различал микромир и «мир видимой Вселенной – природы», но включил в свой макромир геологические явления и живой мир. Он выделил и третий мир: человеческого сознания, государственных и общественных образований, человеческой личности – область, представляющую «новую мировую картину» [5, с.12]. Очерчивая контуры грядущей картины мира, он мог уже сказать с определенностью: «Эти различные по форме, взаимопроникающие, но независимые картины мира сосуществуют в научной мысли рядом, никогда не могут быть сведены в одно целое, в один абстрактный мир физики или механики» [5, с.12–13]. Примечательно, что позже и Планк (1933), возражая против сведения представления о мире к естествознанию, говорил: «В действительности существует непрерывная цепь от физики и химии через биологию и антропологию к социальным наукам, цепь, которая ни в одном месте не может быть разорвана, разве лишь по произволу» [6, с.183]. Эта мысль отвечала постулату о единстве мира, природы.

Типы картин мира и пути их сближения. В XX в., сосуществуя, развивались физическая, биологическая, биосферологическая и техническая картины мира. Естествознание не отказалось от идеала единой «мировой картины», однако ученые трезво оценивали масштабы подстерегающих их трудностей. Их усилия были направлены на преодоление противоречий и достижение единства в пределах каждой отдельной картины мира. Параллельно, объединяя усилия, они нащупывали между ними конгруэнтные области. Образцом построения дисциплинарной картины реальности служила физика. Согласно Планку, первоначально физика имела «антропоморфный характер»: геометрия возникла из земледелия, механика из учения о машинах, теория магнетизма из особенностей руды у г. Магнезии. В XX в. физика приобретает «более объединенный характер»: число ее областей уменьшилось, родственные области слились. Первым шагом к действительному осуществлению единства в физике явилось открытие принципа сохранения энергии. Позже был сформулирован принцип возрастания энтропии и введено понятие вероятности. Затем, «с введением атомистики в физическую картину мира», эти понятия увязываются. Это был «шаг на пути к объединению картины мира» [4, с.39]. Биология в этом объединении участия не принимала. Это не помешало физике оказать глубокое влияние на биологию и биосферологию.

Биологическая картина мира и ее преобразования. Создавая картину планетного преобразования живого мира в интервале геологического времени, картину поступательного усложнения как отдельных форм, входивших в сменяющие друг друга фауны и флоры, так и живого мира в целом, натуралисты XVIII и первой трети XIXвв. еще не представляли себе механизма видообразования. Научная теория видообразования была предложена Ч.Дарвином. Созданная им на экологической основе теория эволюции органического мира приобрела значение биологической картины мира. Дарвин понимал, что живой мир как целое не аморфен, что он внутренне организован и в нем действуют законы, поддерживающие устойчивое равновесие, как в пределах органического мира, так и между последним и неорганической природой. На свою теорию он смотрел как на часть естественнонаучной картины мира. Свой главный труд «Происхождение видов» он завершил словами: «Есть величие в этом воззрении, по которому жизнь, с ее различными проявлениями, творец первоначально вдохнул в одну или ограниченное число форм; и между тем как наша планета продолжает вращаться согласно неизменным законам тяготения, из такого простого начала развилось и продолжает развиваться бесконечное число самых прекрасных и самых изумительных форм» [7, с.666].

XX в. стал эпохой преобразования биологической картины мира. Центральным событием признается преодоление противостояния закона естественного отбора, базирующегося на вероятностном принципе, постулатам классической генетики, вводящим в эту картину биологическую атомистику. Проникновение в микромир живого стимулировало биологов и физиков совместно искать пути сближения биологической и физической картин мира. Основываясь на наличии в организмах микрофизических процессов, к которым применимы принцип дополнительности и статистический подход, Н.Бор указал на возможность использования при анализе биологических элементарных структур и процессов принципов атомной физики. Бор ожидал, что при этом обнаружится влияние сходных с микрофизикой общих принципов.

Считая, что эти идеи Бора «пока еще практически очень далеки от экспериментальной повседневной работы биологов», Н.В.Тимофеев-Ресовский развил принципы теоретизации биологического знания и предложил (совместно с P.Poмпe) свою трактовку основных принципов микрофизики (встретившую, правда, возражения А.Эйнштейна и Л. де Бройля). Он подчеркивал, что организмы – макрофизические объекты и только в этом контексте «можно ставить вопрос о значении микрофизических явлений, статистичности и «принципа усилителя» в биологии» [8, с.156]. Объекты, элементарные частицы и явления в физике и биологии различны. Описание жизненного процесса предполагает использование, по меньшей мере, двух моделей. Физическая модель не затрагивает историческую сторону биологического процесса; вообще «мы вынуждены физико-химическое изучение биологических явлений и нормальный ход жизненного процесса рассматривать как два дополнительных представления...» [8, с.162]. Микрофизика изменила картину мира, не отбрасывая макрофизику Ньютона, аналогично в биологии «дарвиновская теория эволюции уточняется и углубляется современными цитологическими, генетическими, физиологическими, биогеоценологическими, биохимическими и биофизическими представлениями, неизвестными Дарвину» [9, с.180].

Изучение специфических закономерностей эволюции всех уровней организации живого и всех этапов эволюции, начиная с химической и биохимической, заставило осознать недостаточность дарвинизма как теоретической основы всей биологии. Эволюционная биология выдвигает идею построения теории эволюции живой материи. Теоретическая биология стремится построить теорию живой материи, вскрыв ее сущностные физические и химические характеристики. Экология вскрывает законы организации живого на уровне сообществ, биоценозов и живого покрова планеты. Формируется новая биологическая картина мира, уже не сводимая к теории эволюции.

Биосферологическая картина мира. Ее построение в XX в. потребовало синтеза трех картин реальности: геологической, геохимической и биологической. Взгляды биологов и геохимиков настолько разнились, что, казалось, «эти два представления о жизни – биологическое и геохимическое – не совместимы» [10, с.134]. Устраняя препятствия, Вернадский ввел понятие «живое вещество» и построил теорию живой материи, утвердив представление о законах планетной организованности живого вещества, о его роли в создании и поддержании геохимических процессов, об эволюции организмов как звене, соединяющем эволюцию видов с историей химических элементов и эволюцией биосферы. Им руководило убеждение, что «механическое представление о Вселенной, сведение всего на то представление о мире, которое выработано на основании изучения косной природы, не есть требование хода развития науки, не вызывается основной сущностью ее содержания...» [11, с.97].

Осмысливая основания разных картин мира, Вернадский задавался вопросом: «К каким природным явлениям относится пространство-время Эйнштейна или пространство Ньютона?» [12, с.175]. Он принял, что физико-химическое пространство в пределах Земли, включающее в себя «монолит жизни», сложно и неоднородно и не может без поправок сравниваться с пространством Солнечной системы, а последнее с пространством Галактики: это разные «естественные тела». Новая физика позволяла предполагать, что каждое природное тело и явление «имеет свое собственное материально-энергетическое специфическое пространство», которое натуралист познает, изучая симметрию. На этом основании Вернадский ввел понятие пространства земной реальности, где не проявляются «геометрические свойства, которые проявляются... в пространстве галаксии или Космоса», отвечающем пространству Эйнштейна [12, с.181]. Исследуя земное пространство и его состояния, Вернадский нашел, что «Реально пространство – время мы видим в природе только в живом веществе» [12, с.183]. Подкрепляя этот тезис, он рассмотрел понятие диссимметрии и его преобразования от Л.Пастера до П.Кюри, а также ввел в представление о живом веществе и эволюции биосферы принцип цефализации.

Сближая физику, биологию и биогеохимию, Вернадский преобразовал биосферологическую картину в универсальную. Ни физика, ни биология не решили вопроса: «является ли жизнь только земным, планетным явлением, или же она должна быть признана космическим выражением реальности, каким являются пространство–время, материя и энергия»? [13, с.414]. В поисках ответа Вернадский выяснил роль теории Дарвина для биогеохимии и концепции организованности биосферы. Он показал, что именно «биогеохимия конкретно, научно поставила на очередь дня связь жизни не только с физикой частичных сил и с химическими силами... но со строением атомов, с изотопами...» [13, с.414]. В согласии с принципом направленности эволюции он принял, что Человек не случайное явление в биосфере. Допустив, что «земная и даже планетная жизнь является частным случаем проявления жизни», он настаивал: «Вопрос о жизни в Космосе должен сейчас быть поставлен и в науке» [13, с.415]. Его прогноз гласил: «человек выйдет из своей планеты» [14, с.207]. Ученый не ошибся и в том, что его дети станут свидетелями этого события.

Техническая картина мира. Биосферологическая картина мира постулирует превращение биосферы в ноосферу. Человечество создало в пределах биосферы новый мир – мир культуры и науки. Силой своей мысли и трудом человек создал новую форму материи, способную к саморазвитию – техническую материю. Ноосферу нередко характеризуют как техносферу. Констатируется, что техника «сминает» живую природу. Постулируется, что техническая материя примет на себя функции биосферы и обеспечит человеку природную среду, отвечающую его биологическим потребностям. Возможно ли это в принципе? Какие планетные последствия влечет за собой разрушение гармоничной природной среды, функционирующей по строгим законам около 4 млрд. лет? И в XIX и в XX в. натуралисты предупреждали о негативных последствиях непродуманного вторжения в биосферу, но их голоса мало влияли на характер технического прогресса.

Прослеживая историю ноосферы, Вернадский уже в 20-х гг. предупреждал, что человек привел лик планеты «в состояние непрерывных потрясений» [11, с.304]. Человек уничтожил девственную природу, изменил течение всех геохимических реакций, породил новую форму биогенной миграции. Эти опасные сдвиги Вернадский связывал с развитием техники, производства. В конце XX в. именно на технику возлагалась значительная доля ответственности за кризис цивилизации. Непредвзятый анализ убеждал, что существуют серьезные причины для пересмотра всей картины как человеческого, так и технического развития. Дебаты о природе техники воспринимались как споры о будущем человека. Звучали призывы к поиску нового понимания природы и идеала естествознания, к выработке альтернативного набора концептуальных структур и даже альтернативного подхода к знанию. Речь шла о пересмотре самих оснований научной картины мира, о необходимости новой методологии ее построения.

Ноосферная картина мира. Не существует сомнений, что искомая картина мира должна оставаться строго научной. Биология должна занять в ней место рядом с физикой и химией. Не исключено, что приоритет при этом окажется отдан законам организации, жизнедеятельности и эволюции живой материи. Ноосферная картина мира призвана преобразовать мировоззрение. Тактика общечеловеческой деятельности должна быть согласована с законами биосферы. Научно-технический прогресс не вправе нарушать принципы биосферологии: каждое завоевание человека обязано быть и завоеванием биосферы; технические новшества не должны подрывать основу биосферы – биотический круговорот; критерием полезности нововведений призваны служить не только экономические показатели, но и совместимость с прогрессом жизни. Наука XX в. четко сформулировала эти принципы, XXI в. предстоит найти способы их воплощения в действительность.

Литература

1.Степин B.C. Теоретическое знание. М., 2000.

2.Канаев И.И. Жорж Луи Леклер де Бюффон. М.-Л., 1966.

3.Кювье Ж. Рассуждение о переворотах на поверхности земного шара / Пер. с франц. М.-Л., 1937.

4.Планк М. Единство физической картины мира. М., 1966. С.23-50.

5.Вернадский В.И. Труды по радиогеологии. М., 1997.

6.Планк М. Происхождение и влияние научных идей // Единство Физической картины мира. М., I966. С.183-199.

7.Дарвин Ч. Происхождение видов // Соч. Т.3. М.-Л., 1939.

8.Тимофеев-Ресовский Н.В., Ромпе P.P. О статистичности и принципе усилителя в биологии // Тимофеев-Ресовский Н.В. Избранные труды. Генетика. Эволюция. Биосфера. М., 1996. С.154-172.

9.Тимофеев-Ресовский Н.В. О механизмах авторепродукции элементарных клеточных структур. Из истории вопроса // Избранные труды. М., 1996. С.172-186.

10. Вернадский В.И. Труды по биогеохимии и геохимии почв. М., 1992.

11. Вернадский В.И. Живое вещество и биосфера. М., 1994.

12. Вернадский В.И. Химическое строение биосферы Земли и ее окружения. М., 2001.

13. Вернадский В.И. Труды по философии естествознания. М., 2000.

14. Вернадский В.И. Дневники. 1926-1934. М., 2001.

© Э.Н.Мирзоян


[1] Д.б.н., зав. отделом Истории химико-биологических наук ИИЕТ РАН.